On applying weighted seed techniques to GMRES algorithm for solving multiple linear systems
نویسندگان
چکیده
منابع مشابه
On the convergence behavior of the restarted GMRES algorithm for solving nonsymmetric linear systems
The solution of nonsymmetric systems of linear equations continues to be a diicult problem. A main algorithm for solving nonsymmetric problems is restarted GMRES. The algorithm is based on restarting full GMRES every s iterations, for some integer s>0. This paper considers the impact of the restart frequency s on the convergence and work requirements of the method. It is shown that a good choic...
متن کاملGGMRES: A GMRES--type algorithm for solving singular linear equations with index one
In this paper, an algorithm based on the Drazin generalized conjugate residual (DGMRES) algorithm is proposed for computing the group-inverse solution of singular linear equations with index one. Numerical experiments show that the resulting group-inverse solution is reasonably accurate and its computation time is significantly less than that of group-inverse solution obtained by the DGMRES alg...
متن کاملthe block lsmr algorithm for solving linear systems with multiple right-hand sides
lsmr (least squares minimal residual) is an iterative method for the solution of the linear system of equations and leastsquares problems. this paper presents a block version of the lsmr algorithm for solving linear systems with multiple right-hand sides. the new algorithm is based on the block bidiagonalization and derived by minimizing the frobenius norm of the resid ual matrix of normal equa...
متن کاملSolving Shifted Linear Systems with Gmres and Applications to Lattice Gauge Theory Solving Shifted Linear Systems with Gmres and Applications to Lattice Gauge Theory 1. Introduction
of a matrix M 2 C nn and a vector r 2 C n are identical for all 2 C. This fact can be used in Krylov subspace iterative methods (where the
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Boletim da Sociedade Paranaense de Matemática
سال: 2018
ISSN: 2175-1188,0037-8712
DOI: 10.5269/bspm.v36i3.32109